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The point of this writeup is to distill the argument, presented in [2], that the “groundskeeper’s
algorithm” for generating uniformly random spanning trees works. (The beginning of
[1] also provides a helpful account.) This algorithm is as follows:

• Start at some vertex of a graph G.

• Perform a simple random walk: choose an adjacent vertex of the graph uniformly
at random, move to it, and then repeat this process.

• Whenever you visit a vertex for the first time, add the edge you just crossed to
your spanning-tree-in-progress.

• Repeat until all vertices are visited (which will happen with probability 1).

Theorem 1. The above algorithm produces a spanning tree of G uniformly at random.

Proof. It is straightforward to check that this actually produces a spanning tree. We thus
consider the probability distribution induced on the set of spanning trees by this process.

We will want to track the additional information of where the algorithm starts, so we
define a rooted spanning tree to be a spanning tree with a distinguished vertex called
the root. We say that the groundskeeper’s algorithm produces a tree whose root is the
starting vertex. The reason we keep track of the root is that we will want to deal with a
situation in which it changes, as explained next.

Instead of just the portion of the random walk which generates our tree, consider a
(doubly) infinite random walk indexed by the integers

. . . , w−1, w0, w1, w2, . . .

Then this walk induces a sequence of spanning trees

. . . , T−1, T0, T1, T2, . . .

where Tm is the rooted spanning tree obtained by applying the groundskeeper’s algo-
rithm with the portion of the infinite walk starting at wm.

Now we consider the resulting sequence of trees traversed backwards

. . . , T2, T1, T0, T−1, . . .

as a Markov chain. We want to know how Tm can be obtained from Tm+1. This is simple
to describe, and depends only on the tree Tm+1 and the vertex wm.
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Starting our walk from wm rather than wm+1 adds a new edge to the tree, from wm to
wm+1. If there was already an edge there, the same tree is traced out, but with a different
root. Otherwise, the edge in Tm+1 created when the walk visited wm for the first time is
no longer present, but the rest of the tree is unchanged. The crucial observation here is
that we can figure out which edge in Tm+1 was created by visiting wm for the first time
just by looking at the tree, without considering the precise steps in the walk: since there
is a unique path between any two vertices in the tree, we know this edge must be the
last edge of the unique path in Tm+1 from wm+1 to wm. This is illustrated in Figure 1.
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Figure 1: An example of the passage from Tm+1 to Tm in the case thatwm+1 = 3, wm = 1.
The edge omitted from the original tree, between 1 and 4, is the one on the path from 1
to 3.

We introduce a bit of notation to talk about this transformation. If t is a rooted span-
ning tree of G with root v and w is a neighbor of v in G, construct F (t, w) as follows:

• Find the path from v to w in t, and delete the edge incident to w.

• Attach an edge from w to v, and place the root at w.

Then we’ve almost proven the following lemma:

Lemma 1. For trees t and u,

P (Tm = u | Tm+1 = t) =

{
1

r(t) ∃w such that F (t, w) = u

0 otherwise

where r(t) is the degree of t’s root.

Proof. We’ve already seen that Tm = F (Tm+1, w) for some neighbor w of the root of v,
which explains the second line of the piecewise equation. There are r(t) such neighbors,
and they are all equally likely to be wm, which explains the first line.

Although it may seem straightforward, this lemma is at the heart of why the groundskeeper’s
algorithm is uniform: it shows that the rough behavior of the Markov chain we’ve con-
structed is independent of the particular structure of the trees involved.

For later use, we note that the transformation F defined above has an inverse F−1.
For a spanning tree u with root w and a neighbor x of w in G, defined F−1(u, x) as
follows:
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• Follow the path from x to w in u. Let v be the last vertex reached before w.

• Delete the edge between v and w.

• Add an edge between x and w. Make v (note, not x) the new root.

The reader should verify that if t is a tree with root v, w is a neighbor of v, and x is the
first vertex (after w) encountered on the path from w to v in t, then

F−1(F (t, w), x) = t.

For a particular example, note that reading Figure 1 right-to-left shows
F−1(u, 4)← [ u.

Having this inverse gives us an important corollary. Let u be a spanning tree with
root w, and C(u) be the set of all rooted spanning trees t such that F (t, w) = u.

Corollary 1.
|C(u)| = r(u)

Proof. Suppose t ∈ C(u), so that F (t, w) = u. Then there exists a vertex x, a neighbor of
w in the graph, such that F−1(F (t, w), x) = F−1(u, x) = t. This shows that all elements
of C(u) are obtained from neighbors of w in this way, so |C(u)| ≤ r(u). Additionally,
for different neighbors x, x′ the trees F−1(w, x), F−1(w, x′) are distinct, since a different
edge is added for every choice of neighbor. Thus we have equality.

Now that we have a handle on how moving around our starting vertex within a
random walk changes the trees involved, we examine the probability of a particular
rooted spanning tree appearing. By the nature of the process we’ve described, for a
particular rooted spanning tree u, P (Tm = u) is independent of m. Because of this,
we say that the vector of probabilities P (Tm = u) as u ranges over all rooted spanning
trees is the stationary distribution of the Markov chain. The significance of being the
stationary distribution is reflected in the following equation: we have

P (Tm = u) =
∑

all trees t

P (Tm = u | Tm+1 = t)P (Tm+1 = t)

=
∑

t∈C(u)

1

r(t)
P (Tm+1 = t)

=
∑

t∈C(u)

1

r(t)
P (Tm = t)

Thus our probabilities will solve this system of equations. Now we deploy the one black-
boxed fact about Markov chains we need:

Fact. A sufficiently nice Markov chain1 has a unique stationary distribution.

1Essentially, one in which it’s possible to get from any state to any other state, which includes our chain of
trees.
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(If you’d like to learn more about this fact, the buzzwords to look up, besides “Markov
chain”, are “Perron-Frobenius theorem”.)

So in order to describe the probability of a particular rooted tree appearing, we just
need to give a probability distribution that satisfies the above equation and is thus the
stationary distribution. Here it is!

Lemma 2. Let K be the normalizing factor2

K =

( ∑
v vertex

deg(v)

)
τ(G)

where τ(G) is the total number of (unrooted) spanning trees of G. Then

P (Tm = u) =
r(u)

K
.

Proof. We just plug this formula into the equation defining the stationary distribution,
and check that the equation is satisfied:

P (Tm = u) =
∑

all trees t

P (Tm = u | Tm+1 = t)P (Tm+1 = t)

=
∑

t∈C(u)

1

r(t)
P (Tm+1 = t)

=
∑

t∈C(u)

1

r(t)
P (Tm = t)

=
∑

t∈C(u)

1

r(t)

r(t)

K

= |C(u)| 1
K

=
r(u)

K

where in the last line we use Corollary 1.

The takeaway from this lemma is that the probability that a tree obtained through the
groundskeeper’s algorithm is a specific tree depends only on the degree of its root. In
particular, if we restrict to the assumption that our tree has a specific root, then all trees
are equally likely.
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